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(see Fig. 1). The equations are

ar = —(p/2)€[1 — (3n/Ro) + (3/2RH(4n? — £) + ... 1=
—(p/2)§ m/sec?

a, = pyll + (B/4Rm)(E — 29%) + .. .] = py m/see?

where p = 2g9R,2/Ry* = 2.38 X 107 °sec~2 for a 96-min orbit.
These are the tidal accelerations in the £ and % directions, re-
spectively.

It is noted that, at £ or n = 100 km, the second-order term
in the equations affect the tidal acceleration by less than 5%.
Therefore, the tidal accelerations are close linear functions of
Eand 7.

;
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Planar Librations of an Extensible Dumbbell Satellite

B. Pauvr*
Bell Telephone Laboratories Inc., Murray Hill, N. J.

If a gravitationally stabilized satellite has a ‘‘tip mass’’ connected to it through a long elastic arm, the
librational motion about the local vertical will excite longitudinal or “pumping’’ vibrations of the elastic
arm. If the “pumping’’ motions are damped out by some type of internal (passive) friction, the libra-
tional motion will be damped also. In this paper, the equations of planar motion for such a system are
derived and then linearized for the case of viscous damping in a circular orbit. The complete solution is
given in terms of two nondimensional parameters, which are a measure of spring stiffness and viscous
damping, respectively. It is shown that, if the internal friction arises from “material damping’’ within
the spring, there will be relatively little damping of a viscous nature; however, there is a nonlinear time-
independent type of hysteretic damping which could be significant. It is shown how the latter type of
damping may be analyzed by a technique of ‘“‘equivalent viscous damping.”” A configuration of practical

interest is examined in a numerical example.

Nomenclature
A = amplitude of spring oscillation
a = parameter defined by Eq. (3.15)
c = viscous damping constant
Coer = 2mpe(n® — 1)1/2
D = helical spring coil diameter
Dy, = unit damping energy of material
d = wire diameter of helical spring
e = base of natural logarithms
Faq = damping force
G = modulus of elasticity in shear (modulus of rigid-
ity)
go = acceleration of gravity at surface of earth
K = material damping constant
ks = spring constant, foree/unit extension
nm = satellite mass
Mma = tip mass
m = mﬂTLz/(ml + mz)
n = ps/po = (ks/3mQ2)"2
N, = number of coils in helical spring
P = 3Y2Q = uncoupled librational circular frequency
Ds = (ks/m)"? = uncoupled pumping circular fre-
quency
qr,q9 = generalized coordinates
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Qr, Qo = generalized forces

r = distance between masses m; and ms

7o = value of r when spring is unstrained

Ry = radius of earth

S = spring force

8, Sij

(z = 1,2) = roots of characteristic equation

T = kinetic energy of system

T. = kinetic energy of mass center

Ty, T = kinetic energies of m; and m, with respect to mass
center

¢ = time

To = orbital period

U = potential energy stored in spring

AU = energy loss/cycle

z = extension of spring from free length

Tt = ro/(n? — 1) = static extension of spring in orbit

z = (z — Zst)/mo

Z = initial value of 2

ai(t = 1,2) = negative of real part of root of characteristic
equation

B¢ = 1,2) = imaginary part of root of characteristic equation

¥ = C/mpp

8 ) = virtual displacement in ( )

Iy = |m|n2/nBi(n? — 1)12

(0] = initial libration amplitude

6 = libration angle

61, 6> = constants of integration

Om — @8—1/7

A = ryd/N.D?

A = 3AU/U = logarithmic decrement

Am. = logarithmic decrement of material

© =7Z/®

w1, pe = pevaluated for sn or su

14 = goRo2

Py P1, P2 = radius from center of earth to mass center of

satellite, m,, ms, respectively
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Fig.1 Satellite system in orbital plane

1/(312 Qa;) = system time constant

™™ = ghear stress amplitude

¢, ¢1, ¢2 = phase angles

17/ = anomaly

Q = o = angular speed in cireular orbit

@ = circular frequency of extension vibration

1. Introduction

.T is well known that an elongated satellite in orbit around
the earth will tend to align its “long” principal axis (axis
of minimum moment of inertia) along the local vertical.
Any small disturbance of this axis from its vertical equi-
librium position will cause a vibration that generally is re-
ferred to as the Iibrational motion. It has been shown re-
peatedly’? that such a libration, once excited, will continue
indefinitely unless some mechanism is present to dissipate
energy. Among the various schemes considered to provide
damping of the librational motion is one analyzed in some
detail by Hall and Smith,® who attributed the ‘basic idea to
R. E. Roberson. Roberson* apparently had discussed similar
schemes at an earlier date, although not in sufficient detail for
practical design purposes. The same idea was arrived at in-
dependently some time afterward at Applied Physies Labora-
tory of Johns Hopkins University, where the concept was
incorporated into the TRAAC satellites This design con-
sists primarily of two masses interconnected along the axis
of minimum inertia by means of an elastic spring and an
energy dissipating device, as shown schematically in Fig. 1.
A librational motion induces centripetal accelerations that
excite longitudinal vibrations of the spring and consequently
cause damping of both the spring vibration and satellite
libration.

The purpose of this paper is to obtain an estimate of the
rate of libration attenuation in practical satellite systems
where the dissipation is provided by the so-called “material
damping” within the microstructure of the spring material.
The satellite is assumed to have an inexorable circular orbit
about a spherical earth and to be uninfluenced by any force
fields other than gravitational attraction of the earth. It is
to be understood that only the “pitch” motions (in orbital
plane) of the satellite are under consideration in this paper.
Whether or not the simple configuration illustrated in Fig. 1
is capable of damping motions perpendicular to the orbital
plane can be determined only by a study of the three-dimen-
sional problem. Such a study is beyond the scope of this
paper. Other effects that have not been included in this
paper but that might influence the behavior of an actual
satellite include bending, twisting, and elastic wave propa-
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gation in the spring, time, temperature, and “static stress”
effects on the spring material, forced vibrations due to orbit
eccentricity, earth-bulge, and other perturbations.

In Ref. 3, the damping is assumed to be linearly viscous
ab initio; however, the general equations of motion were not
linearized but solved numerically for certain parameter
values. The explicit solution of the linearized equations pre-
sented herein enables the analysis to proceed without any de-
tailed specialization of initial conditions or system parame-
ters, within limits of the small deflection requirements. '

The importance of obtaining fairly general solutions, such
as those obtained by proper linearization, cannot be over-
emphasized. For example, in a recent survey of attitude
control problems,s the authors have concluded, on the basis
of Hall and Smith’s work, that the system under discussion
does not constitute a practical attitude control scheme. This
conclusion is based on a very special combination of parame-
ters. In order to do justice to the basic concept, it is neces-
sary to examine a much wider range of parameters. The
analysis of this paper makes it possible to make such a study
without direct recourse to electronic computers. Finally,
the method used in this paper for treating material damping
in multidegree of freedom systems, via the concept of equiva-
lent viscous damping, seems to the author to be of value and is
capable of being extended to more complex problems.

2. Equations of Motion

The equations of motion for the system will be derived by
use of the Lagrangian formulation (Ref. 8 Chap. 3). One
generalized coordinate of the problem will be the angle 6 be-
tween the local vertical and the line joining the two point
masses m; and me shown in Fig. 1. The second generalized co-
ordinate will be the distance r between the two masses.

A. Kinetic Energy

The kinetic energy T is found easily by noting that the
kinetic energy T of a particle, of mass m = m; 4 me, moving
with the speed v of the mass center is given by (ef., Fig. 1)

T. = $m* = (m/2)[* + (»D)%] 2.1

where Q@ = y is the angular velocity of the line joining the
center of the earth to the satellite mass center, p is the radius
vector from earth center to the satellite mass center, and ¢ is
the angle (or anomaly) between a reference line (e.g., line of
apsides) and radius vector. The total kinetic energy of the
system (with respect to earth-fixed axes) is given (Ref. 8, p.
158) by

T=T.4+T+ T, 2.2)
where
Ty = (m/2)[(mei/m)? + (mar/m)*(6 + )] (23)
and similarly for T, with interchange of subscripts 1 and 2.
Hence by Egs. (2.1-2.3)
T = (m/2)[6* + (D] + @/2)[(»)* + r*(0 + V2 (24
where the “reduced mass” # is defined by

M= mme/ (my 4+ me) = mymy/m (2.5)

B. Potential Energy and Generalized Forces

Within the framework of idealizations chosen for this
analysis, the only forces that act on the masses m; and m. are:
1) gravity force, 2) spring force, and 3) damping forece. Of
these, the first two are conservative and may be derived from
a potential function, whereas the last cannot be so derived.

The potential of the spring forces is shown easily to be
equal to the strain energy U stored in the spring, which is a
function only of the elongation r — 7o, where ro designates the
free length of the spring. :
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The potential V; of a spherical mass m; in an inverse square
force field is given by the well-known expression (Ref. 9, p. 76).

v = goRoz (27)

where g, represents the acceleration of gravity at the earth’s
surface and R is the radius of the spherical earth. In order
to express p; in terms of generalized coordinates, one notes
from Fig. 1 and the law of cosines that

pi = p? + (mar/m)? F 2p(mar/m) cosf (2.8)

where the upper sign is used for ¢ = 1, the lower sign is used
fors = 2, and m =my + ms. It proves convenient to express
the term 1/p; in powers of r/p (e.g., by use of the binomial
theorem) as follows:

2
1_=1[1_1(ﬁ2t> +@(zcosg>+
PP 2\m p m \p

3 (mer 2

where terms of order (r/p)? have been omitted inside the
brackets. To find 1/p,, merely replace ms by —m; on the
right-hand side of Eq. (2.9). Upon substitution of p; and p,
into Eq. (2.6), one finds for the potential V of the gravity
forces the expression

V=Vi+Ve= —0m/p) — (win/2p%)r*(1 + 3 cos28)
(2.10)
Although the damping forces that act on each mass are not
derivable from a potential function, one notes that the work
W done by these forces, in an infinitesimal virtual displace-
ment or, is W = —F0r, where F, is the force exerted by the
damper on either mass (defined to be positive when tending
to separate the masses). The generalized force @, correspond-
ing to the coordinate r is defined (Ref. 9, p. 16) by @, =
oW /6r = —F,. Since the force Fy does no work when r is
held fixed and 8 is varied, it follows that the generalized force
@, corresponding to the coordinate @ vanishes.

C. Lagrange’s Equations of Motions

Lagrange’s equations (Ref. 8, p. 215), are

(d/dt)(T/36) — (DT/36) + PV + U)/360] = 0 @.11)
(d/dt)(0T/d¢7) — (T/or) + PV + U)/or) = —F4

where a dot signifies differentiation with respect to time ¢.
Upon substitution of 7 and V into Eq. (2.11), one finds

6+ 2(/r) (0 + Q) + (3v/2p%) sin20 = —
mr + Fo+ @U/or) — rin (6 + Q)2 — (2.12)
(»mir/2p%) (1 + 3 cos26) = 0
These equations agree, except for notation, with equivalent
equations derived in Ref. 3 for the special case where m; = ma.
D. Small Motions about Circular Orbit

Now concentrate on the case of a circular orbit such that
p = constant, and the angular velocity € is found by cbserv-
ing that the “centrifugal force” mpQ? is balanced by the
gravity force vmy p2, or

v/p® = Q2 (2.13)

In addition, attention is restricted to small motions such
that sin20 =~ 20, cos 20 ~ 1, and the following notation is
introduced:

r=r -+ 2z (2.14)
where 7o is the free length of the spring and z « r,. At the
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same time, assume that the spring force is perfectly elastic
and expressed by

oU/or = k(r — 1) = k (2.15)

where k, is the force required to stretch the spring through
unit extension.

If one now assumes that all the terms xz/r, 8, Q2/ro, §/Q
are negligible in comparison to unity, it follows after substitu-
tion of Egs. (2.14) and (2.15) into Eqgs. (2.12) that

8+ 2Q9@2/r) + pe?0 = 0 (2.16a)
(&/ro) + (Fa/rom) + (n* — 1)pg*(a/ro) — 206 = pg2  (2.16D)
where

pg = 3120 ps = (ks/T)1? n = p/ps (2.17)

The parameters py and p, have the following physical sig-
nificance: pj is the circular frequency of libration for a rigid
dumbbell; p, is the circular frequency for the pumping mode
in the absence of gravity, damping, or orbital motion.

3. System with Linear Viscous Damping

If the damping force is proportional to the rate of extension,
one may write

Fq=Ci (3.1)

where C will be referred to as the damping constant.
In order to place the equations in a more symmetric form,
the nondimensional variable z is defined by

2= (z — 2u)/To (3.2)
where . .
Zo/To = 1/(n? — 1) (3.3)

As may be seen from Eq. (2.16b), z, represents the deflection
of the spring when both & and # are zero. That is, @, is in
the nature of a “static’”’ deflection when the system is orbiting
without libration. It should be noted from Eq. (3.3) that z,.
grows beyond bound when n = 1. The physical significance
of this fact is that the spring cannot support the tension pro-
duced by the orbital motion unless p, > ps. Mathematically,
this is manifested by an instability of the equations of motion
unless n > 1.

Upon substitution of Egs. (3.1) and (3.2) into the cqua-
tion of motion (2.16), it is found that the governing equations
of the system assume the form

G+ 20 + pg26 = 0 (3.42)
4 (C/m)e — 200 + (n? — Dpg2z = 0 (3.4b)

In order to solve these equations, the standard trial solution
is adopted:
0 = @O exp(spyt) z = Z exp(spgt) (3.5)

Upon substitution of the trial solution into the equations of
motion, one finds that s must satisfy the characteristic equa-
tion:

sty 23+ ys+nt—1=0 (3.6)
where the symbol 4 has been used to represent
v = C/impy = C/3*7Q 3.7
and the ratio Z/@, hereafter specified by u, must satisfy
p=7Z/0 = —342(s* + 1)/2s (3.8)

When damping is not too great and the system is dynamically
stable, the four roots of Eq. (3.8) appear as two pairs of
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Table1 ay

C/Ca |n= 2112 2 4 6
0.01 0002500053 0.001541552 00002159679 0.00006298106
0.05 0.01250660 0.007705733 0.001079315 00003148277
0.10 0.02505294 0.01539866 0.002155352 00006291700
0.15 0.03767954 0.02306525 0.003224861 0.0009425431
0.20 005042853 0.03069057 0004284637 0.001254468
0.25 006334449 0.03825748 0005331552 0.001564475
0.30 0.07647557 004574579 0006362578 0.001872099
0.40 0.1036008 0.0638557 0.008365454 0.002478405

Table 2

C/Co | m= 2172 2 4 6
0.01 0007499947 0.01577896 0.03851386 0.05909782
0.05 0.03749340 007889681 0.1925698 02954802
0.10 007494706 0.1578064 0.3851430 0.5000788
0.15 0.1123204 0.2367424 0.5777226 0.8864694
0.20 0.1495715 0.3157196 0.7703120 1.181961
0.25 0.1866555 0.3947552 0.9629143 1.477455
0.30 02235244 04738694 1.155532 1.772952
0 40 02963992 0.6324347 1.540828 2363953

Table3 8

C/Co | = 9112 2 4 6
0.01 0.5773530 0.7994324 0.9557892 0.9809714
0.05 05774180 0.7996270 0.9558132 0.9809763
0.10 0.5776223 08002363 0.9558881 0.9809916
0.15 05779662 0.8012559 0.9560125 0.9810170
0.20 0.5784551 0.8026917 0.9561853 0 9810525
0.25 05790969 0.8045516 0.9564069 09810980
0.30 0.5799023 0.8068455 0.9566748 0.9811533
0.40 0.5820638 0.8127804 0.9573450 0.9812928

Table 4 8,

C/Cor | m = 2112 2 4 6 B
0.01 1.752010 2166539 4.051948 6030549
0.05 1.731035 2.164536 4047448 6.023565
0.10 1.727984 2158262 4.033355 6.001687
0.15 1.722882 2147767 4.009756 5965045
0.20 1.715703 2132088 3976436 5.913367
0.25 1.706409 2.113841 3933300 5 846251
0.30 1.694951 2090210 3879871 5.763162
040 1.665269 2028877 3740460 5.546051

conjugate complex numbers with negative real parts that
may be expressed in the form

8“}= —a *+ B, S“}: —m B (3.9
812 S22

where «; and a, are real positive numbers and 1 = (—1)'/2
Under these circumstances, the complete solution may be
written in the real form

6 = @™ P cos(peBit + @) + Oe™%PE X
cos(pelBat + ¢2)

2 = |w|@e~%Pe cos(pyBit + @1 + argu) +
| 2| @z~ %:Pot cos(pgfBet + @2 + argus)

In these equations, @, ®,, ¢, ¢s, represent real constants
determined by the initial conditions; w; = u(sn), g2 =
u(s21). where u(s) is the complex number defined by Eq. (3.8).
The notations |u| and argu denote the absolute value of y
and argument (angle) of the complex number u, respectively.

In order to make further progress, it is desirable to investi-
gate some numerical cases at this point. The roots of the
characteristic Eq. (3.8) depend upon the two dimensionless

(3.10)

parameters n? and . It already has been decided that n?
should be greater than unity for stability, and the following
cases will be investigated numerically: n? = 1,2,4,16,36,64,
100. In order to choose sensible values of v = C/mp,, it is
noted that, if the librational motion is suppressed, i.e.,
if § = 0, Tiq. (3.4b) describes a viscously damped har-
monic oscillator whose critical damping constant C,, is de-
fined (Ref. 8, p. 35) by

C.. = 2mpy(n? — 1)112 (3.11)
Hence, from Eq. (3.7),
v = C/inpy = (C/Cer)(Cer/Mpy) =
2(nt — DHV(C/C. (3.12)

Tables 1-4 show typical values of a;, 8;, corresponding via
Eqgs. (3.9) to the roots of the characteristic evuation, over a
range of interest of n and C/C..

The following points of interest may be noted from a study
of the tables:

1) For n greater than 2, B, is very close to unity and 8. is
very close to n, at least for values of C/C., less than about 3.
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Hence, it is seen that for n > 2 one of the two component
oscillations occurs at essentially the uncoupled librational
frequency py, = 3'/2Q; the other component oscillation occurs
essentially at the uncoupled pumping frequency npy = p, =
(ks/m)12 [cf., Eq. (2.17)].

2) For n greater than 2, a, is considerably greater than a.
This means that the component of 4 oscillating at “pumping”
frequency is damped out considerably faster than the com-
ponent oscillating at “librational” frequency.

Therefore, regardless of the initial conditions, the system
settles down after a short time to a motion where both 6 and z
oscillate at essentially “librational frequency” pg, with damp-
ing rate determined by ;. Thus, after a reasonable length of
time, the motion can be represented [cf., Eq. (3.10)] by

0 ~ @e~t/7 cos(Bipgt + P)
z ~ pl@le™" cos(Bipgt + & + argp)

where @, ® are constants determined by initial conditions,
and the “time constant” 7 of the system is the time required
for the amplitudes to diminish by a factor of 1/e = 0.368 and
is defined by

(3.13)

7 = 1/3VQq, = Ty/10.9a; (3.14)

The expression T, = 2u/Q represents the orbital period.
Figure 2 shows how the ratio T,/7 varies with the “damping
ratio” C/C., for various values of the “frequency ratio” n=
ps/pg. The ratio /T, is precisely the number of orbits which
must be completed before the amplitude decays by 63%.

A close examination of Table 1 shows that for light damping
oy 1s practically proportional to C/C.. for any fixed value of n;
that is,

o = a (C/C,) (3.15)

where a depends upon n. Figure 3 shows how a should be
chosen to make Eq. (3.15) exact for C/C., = 0.2 and never
cause an error exceeding 19, for smaller values of C/C...
The numerical value of C/C,. depends upon the materials
and construction of the actual system. In any practical
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system, at least a part of the damping must come from
hysteretic loss in the material of the spring, that is, from
“material damping.” The next section will be devoted to
some considerations of material damping.

4. Damping in Real Materials

Some of the many factors that influence the phenomenon of
energy dissipation in materials are discussed in the recent re-
view of Lazan.” It is most convenient for present purposes
to divide these factors into two major categories that will be
designated as time (or frequency) dependent effects and time
(or frequency) independent effects. Time dependency is
characteristic of viscosity effects; the microscopic origin of
such effects in solid materials is discussed by Zener.'? From a
macroscopic point of view, it is sufficient to know the damping
constant C for a given spring or the logarithmic decrement A,
defined in general (for all types of damping) by

A=} (AU/U) =AU/kA 4.1)
where
AU = energy dissipated/cycle
k, = spring constant, force/unit extension
A, = amplitude of vibration

A. Frequency-Dependent Damping .

In the case of a linear damper, with damping constant C,
one may show that AU = n(CA%, where « is the circular
frequency of vibration. Therefore, Eq. (4.1) may be written
in the form

A = 7Cuw/k, (4.2)

It is significant that, for a viscous material, the logarithmic
decrement is independent of amplitude but dependent on fre-
quency. For this reason, such damping is frequently called
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Table 5 Approximate time constants (An/7 = 0.002; Table 6 Functions Iull and {
Q = 864day~l; B =~ 1)
Mean

n 212 2 4 6 8 10 n  C/Cq s |l ¢(n)

7 days 13.2 18.9 75.5 175 307 495 21/2 0.01 0.99998 0.998 1.100
0.20 0.99615

2 0.01 0.39097 0.388 0.358
“amplitude independent” damping.” It will be seen below 0.20 0.38375

that materials that exhibit time-independent damping 4 8% 88?_32;:‘7‘ 0.0780 0.107
. . {0

generally have amplitude-dependent logarithmic decrements.
Since the present formulation of the general problem requires
knowledge of the damping ratio C/C.,, one must express this
ratio in terms of the loss factor M., where the subscript m
signifies that A is a material property rather than a system
property. The required relation is

C An ke Am [ Ps n
(Ccr) T o7 ol 27 <w> (n? — 1)1/2 (4.3)
where use has been made of the definition of C.. given by Eq.
(3.11) and the fact that (p,/ps) = n. If one recalls that the

oscillation frequency after a reasonable length of time is given
by o = Bipg = (13122, Eq. (4.3) may be written as

C/Cer = (Nn/2wB1) [n*/ (n* — 1)*72] (4.4)

Upon substituting Egs. (4.4) and (3.15) into Eq. (3.14), one
finds the time constant ’

_2Bi(n* — D2 2(n — 1)ix
” 31%Qan(\,,/ ) 3120an\,,

where the inequality follows from 8; < 1 (see Table 3). How-
ever, since 3 is practically unity for » > 2, the error is not too
great in assuming 3; ~ 1.

Assume for the moment that the damping is primarily
viscoelastic, and try to find the order of magnitude of ., based
on this assumption. Since viscoelastic loss factors are quite
frequency-dependent, it is necessary to use experimental data
obtained in the very low frequency range (corresponding to near
earth orbits) of the order of 10~4 ¢ps. Although the author
knows of no experiments performed at such a low frequency,
perhaps it may be instructive to examine experimental re-
sults corresponding to somewhat higher frequencies in order
to obtain a feeling of numerical magnitudes.

Experiments of Bennewitz and Rotger'® are reported by
Zener (Ref. 12, p. 55) for a number of different materials in the
frequency range of 1 to 1000 cps. The maximum logarithmic
decrements are of the order of A,, = 0.002z. It therefore is
not entirely unreasonable to use this number in the low fre-
quency range of 1073 or 10~ cps. Using this value for A,
together with @ = 86.4 rad/day (corresponding to an orbital
altitude of 500 naut miles) and the observation that B; is
approximately unity, one can compute close upper bounds on
the time constant from Eq. (4.5) and Fig. 3, with the results
shown in Table 5.
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Fig. 4 Libration amplitude vs t*

It thus appears that even for very soft springs (low n) the
typical available values of X, (of order 0.0027) correspond to
fairly long time constants. In other words, if one relies upon
the viscoelastic damping inherent in most spring materials,
one can expect quite small damping rates.

B. Frequency-Independent Damping

It then appears that, if a lower time constant is required, it
is necessary to rely upon some mechanical phenomenon other
than inherent viscoelastic material damping.

One such phenomenon is time-independent hysteresis.
Actually, this term includes a host of submicroscopic phe-
nomena described in Refs. 7, 11, and 15. Attention will be
restricted to macroscopic behavior such as may be observed
for a closewound helical spring. It may be shown!# that, if
such a spring is made of a material with time-independent
damping, for low stresses, the logarithmic decrement A,, is
approximately a linear function of the stress amplitude 7.,
ie.,

Au/2m = K(7/@) 4.6)

where @ is the modulus of elasticity in shear and K is an ex-
perimentally determined material constant. Using this ex-
pression in Eq. (4.4), one finds that the equivalent viscous
damping ratio C/C.. is given byt

(C/Cor)eq = IZTan/Gﬂl(n2 - 1)1/2 (4'7)

It has been assumed up to now that the shear stress under-
goes complete reversal between values of =7,. If, however,
the shear stress oscillates about a “‘static”’ stress level 7,0 such
that its extreme values are 7,0 == 7., there may be marked
differences in the damping losses in the two cases (particularly
for magnetostrictive damping). Cochardt®® has observed
that the presence of a static stress usually depresses the damp-
ing, but cases are known where g static stress increases the
damping.

5. Equivalent Viscous Damping

In order to use the equivalent viscous damping ratio de-
fined by Eq. (4.7), it is desirable to express the shear stress
amplitude 7,, in terms of the “librational” amplitude ®. To
do this, one notes from Eq. (3.13) that when the system
librates with amplitude 8., defined by

b = O3 /"% (.1)

the variable z oscillates with amplitude z, = |w|f.. The
physical extension of the spring from its free length has been
defined by the coordinate z; therefore, the amplitude of
oscillation A about the “static” deflection defined by Eq. (3.3)
is given by

A = Tm — Tst = TO[(Tm - xst)/ro] = Toem (5.2)

T For steady-state forced oscillations where 7, is constant,
the equivalent of Eq. (4.7) may be found in the standard litera-
ture (e.g., Ref. 10, p. 92). For free vibration of a nonlinearly
damped system, Eq. (4.7) is equivalent to the result found by the
method of Kryloff and Bogoliuboff (Ref. 16, p. 59).
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where use has been made of the definition of 2z given by Eq.
(3.2), and z.,, signifies the maximum value of z. Sinee z, =
|111/6.m, one may write

4= "‘o‘ﬂllom (5.3)

for the extension amplitude of the spring from its position
of static equilibrium while in orbit.

For a coil spring with N, coils of wire of diameter d and
modulus of rigidity @, wound in a close-coiled helix of diameter
D, the maximum shear stress 7, corresponding to an exten~
sion 4 is given' by

Tw = GdA/7wN.D? (5.4)

Substitution of Egs. (5.4) and (5.3) into Eq. (4.7) results in
the following expression for the equivalent viscous damping
ratio:

N NS .
<0—) N <7r/81 (n* — nm) K (Num) b (5.5)

Equation (5.5) really defines C'/C.. implicitly, since 8, and
the complex number u;, defined by Eq. (3.8), are dependent
upon the root s; of the characteristic equation, which in turn
‘depends-upon-both-n-and C/C.:... However, now it will be
shown that, for light damping, both 8, and || are essentially
independent of C/C., and hence a function of n only.

From Eq. (3.8), one sees that

f = 22| 2L
M1 9 5
31/2 1 2 _ 22 4 20 27]1/2
2 [( e a12i)ﬁlj_ = j| (5.6)

where a; and 8, are given in Tables 1 and 3.

Table 6 shows the numerical value of || for ¢/C., = 0.01,
C/C. = 0.20, and a variety of values of n. The difference in
|| for the two different values of C/C.. clearly is negligible

in all cases. A more detailed computaton shows that |u,| is
very insensitive to C/C., and niay be replaced by its mean
value in the range 0.01 < C/C., < 0.20. A glance at
Table 3 shows that §; is also very insensitive to C/C,, in this
range; hence, the bracket in Eq. (5.5) is a function of n only,
which will be designated by ¢(n):

c(m) = |ui|n?/wBi(n? — 1)112 .7)

The function {(n) is tabulated in Table 6, and {/10 is shown
in Fig. 3. The equivalent viscous damping ratio now takes
the simple form

(C/Ccr)eq = (KAOn (5.8)
where A is a “geometric’”’ or “form” factor defined by
A= 7d/N.D? (5.9)

For the case of light damping, where, as was seen in Sec. 3, the
damping factor a; = a(C/C..), the libration amplitude may
be written as

0, = © expl—a(C/C.).3108] (5.10)

Upon substitution of (C/C..)., from Eq. (5.8), one finds
that Eq. (5.10) leads to the result

0x/O® = exp(—a{KA 31/%Q0,,t) (5.11)
or
In(8,./®)
—- =¥ 5.12
) (5.12)
where ¢* is defined by

t* = 312QaAKOt = 32 7al KAO(t/Ty)  (5.13)
Equation (5.12) is illustrated by the curve labeled ‘“‘ampli-
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Fig. 5 Libration decay for various initial amplitudes

tude-dependent damping” in Fig. 4. For comparison pur-
poses, the exponential curve that results when the damping
proceeds at its initial rate [i.e., when 8., is replaced by ® on
the right-hand side of Eq. (5.11)] is shown by the broken
line in Fig. 4, labeled “amplitude-independent damping.”

It perhaps is worth mentioning that, although the present
system has two degrees of freedom, the method of solution
used here is, in a sense, a variant of the method of Kryloff

-and Bogoliuboffs for systems with a single degree of free-

dom. One is able to apply the method because one of the two
degrees of freedom in the present problem is damped very
rapidly. The remaining degree of freedom is then described
adequately by one of the principal modes of the undamped
system.

6. Numerical Example

The following numerical data will be assumed in order to
calculate a typical set of decay times:

Orbit altitude = 500 naut miles (p == 4534 statute miles)

Tip mass m, weighs 3 1b at earth’s surface

For the spring, free length r, = 60 ft, number of coils N, =
‘127, coil diam D' = 6 in., wire diam d = 0.007 in., shear
modulus G = 12 X 106 psi

From Egs. (2.13) and (2.7), one finds Q2= 1.00 X 10-3
rad/sec and Ty = 27x/Q = 1.75 hr. From Ref. 17, k, =
14.2 X 10781b/in. From Eq. (2.5), i = my/(1 + ms/m;) =~
my, since my; > my. Therefore, Eq. (2.71) gives n = 2.46.
From Eq. (5.9) A = 1.10 X 1073 and from Fig. 3 one finds
a = 0.092 and ¢ = 0.250.

With these numerical values, one finds from Eq. (5.13)

t* = 0.00286K0(t/To) (6.1)

The factor K must come from experiments performed at
frequencies of the same order as that which prevails in space
(Q = 103 sec™!); otherwise creep, relaxation, and other time-
dependent effects might mask the time-independent effects
one seeks to measure. It is also desirable that the experi-
ments be performed in the presence of a static stress Tmo
corresponding to the static extension z,; that will occur in
orbit.

The author has been informed by R. Fischell, of Applied
Physics Laboratory, that energy losses of 10%/cycle have
been observed when a cadmium plated wire of 0.007 in. diam
was subjected to torsional oscillations with a stress amplitude
of 7. = 200 psi and a period of roughly 1 hr. This corre-
sponds to a logarithmic decrement of A, = 3109, = 0.05.
Although no static stress was present in these tests, these data
will be used to calculate K. If one assumes that the stress
level is sufficiently low for Eq. (4.6) to be valid, one finds
that

K = \.G/2x7,, = 497 (6.2)
Substituting this value of K into Eq. (6.2) results in the
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following expression for the nondimensional time £*:
t* = 0.1420(/Ty) = 1.950¢ days (6.3)

Equation (6.3) may be used in conjunction with Fig. 4 to
find the time of decay for any given value of ®. Figure 5
shows the attenuation time curves for various ‘‘initial”
values of libration. It must be borne in mind that @ is not,
strictly speaking, the initial libration amplitude but may be
thought of as the libration amplitude at that time where the
“pumping mode” has essentially damped out.

7. Conclusion

The equations of motion for a “pumping,” librating satel-
lite have been derived for two-dimensional (pitch) motion
along a specified plane orbit. For sufficiently small depar-
tures from the local vertical, the equations have been linear-
ized. It has been shown that the motion consists of a “libra-
tional mode” and a “pumping mode,”” the latter of which dies
out considerably faster than does the former. Thus, after a
sufficient length of time, the system librates and pumps at
essentially the uncoupled librational frequency, 3'/2 X orbit
frequency. The rate of attenuation depends upon two non-
dimensional parameters: n, which is a measure of spring
stiffness, and C/C.,, & measure of viscosity. The system time
constant = (time for attenuation of 63%,) is given in terms of
these two parameters by Fig. 2. .

It appears unlikely that real materials can provide a suf-
ficient amount of viscous damping at the very low frequencies
involved. However, it has been shown that a type of fre-
quency-insensitive damping, referred to as time-independent
hysteresis, possibly may provide adequate damping. How-
ever, in order to analyze the effects of such an inherently non-
linear phenomenon, it has been necessary to use the concept
of equivalent viscous damping. Using this concept, one
easily may find the time required to reduce a small (say less
than 30°) librational amplitude 6, to any presrcibed frac-
tion of its initial value ®. The ratio 6,./@® is given in Fig. 4in
terms of the nondimensional time t*. The decay rates found
in a numerical example are not unreasonable for certain
satellite applications.
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